The Gauss Map of Minimal Surfaces in the Heisenberg Group
نویسندگان
چکیده
منابع مشابه
The Gauss Map of Minimal Surfaces in the Heisenberg Group
We study the Gauss map of minimal surfaces in the Heisenberg group Nil3 endowed with a left-invariant Riemannian metric. We prove that the Gauss map of a nowhere vertical minimal surface is harmonic into the hyperbolic plane H. Conversely, any nowhere antiholomorphic harmonic map into H is the Gauss map of a nowhere vertical minimal surface. Finally, we study the image of the Gauss map of compl...
متن کاملMinimal Surfaces in the Heisenberg Group
We investigate the minimal surface problem in the three dimensional Heisenberg group, H , equipped with its standard Carnot-Carathéodory metric. Using a particular surface measure, we characterize minimal surfaces in terms of a sub-elliptic partial differential equation and prove an existence result for the Plateau problem in this setting. Further, we provide a link between our minimal surfaces...
متن کاملThe Gauss Map of Minimal Surfaces in R
In this paper, we prove effective estimates for the number of exceptional values and the totally ramified value number for the Gauss map of pseudo-algebraic minimal surfaces in Euclidean four-space and give a kind of unicity theorem.
متن کاملL_1 operator and Gauss map of quadric surfaces
The quadrics are all surfaces that can be expressed as a second degree polynomialin x, y and z. We study the Gauss map G of quadric surfaces in the 3-dimensional Euclidean space R^3 with respect to the so called L_1 operator ( Cheng-Yau operator □) acting on the smooth functions defined on the surfaces. For any smooth functions f defined on the surfaces, L_f=tr(P_1o hessf), where P_1 is t...
متن کاملMinimal Surfaces and Harmonic Functions in the Heisenberg Group
We study the blow-up of H-perimeter minimizing sets in the Heisenberg group H, n ≥ 2. We show that the Lipschitz approximations rescaled by the square root of excess converge to a limit function. Assuming a stronger notion of local minimality, we prove that this limit function is harmonic for the Kohn Laplacian in a lower dimensional Heisenberg group.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Mathematics Research Notices
سال: 2010
ISSN: 1073-7928,1687-0247
DOI: 10.1093/imrn/rnq092